

Item no.: T60404-N4646-X400

K-No.: 24578

25 A Current Sensor

For the electronic measurement of currents: DC, AC, pulsed, mixed ..., with a galvanic Isolation between the primary circuit (high power) and the secondary circuit (electronic circuit)

Date: 20.01.2022

Customer: Standard type

Customers Part no.:

Page 1 of 5

Description

- Closed loop (compensation)
 Current Sensor with magnetic field probe
- Printed circuit board mounting
- · Casing and materials UL-listed

Characteristics

- Excellent accuracy
- · Very low offset current
- Very low temperature dependency and offset current drift
- Very low hysteresis of offset current
- Low response time
- Wide frequency bandwidth
- Compact design
- · Reduced offset ripple

Applications

Mainly used for stationary operation in industrial applications:

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Switched Mode Power Supplies (SMPS)
- Power Supplies for welding applications
- Uninterruptable Power Supplies (UPS)

Electrical data - Ratings

I _{PN}	Primary nominal r.m.s. current	25	Α
R _M	Measuring resistance V _C =± 12V	10 200	Ω
	V _C =± 15V	22 400	Ω
I _{SN}	Secondary nominal r.m.s. current	25	mA
K _N	Turns ratio	13:1000	

Accuracy - Dynamic performance data

		min.	typ.	max.	Unit
I _{P,max}	Max. measuring range				
	@ $V_C = \pm 12V$, $R_M = 10 \Omega$ ($t_{max} = 10 sec$)	±120			Α
	@ $V_C = \pm 15V$, $R_M = 22 \Omega$ ($t_{max} = 10 sec$)	±130			Α
Χ	Accuracy @ I _{PN} , $\theta_A = 25$ °C		0.1	0.5	%
εL	Linearity			0.1	%
I ₀	Offset current @ $I_P=0A$, $\theta_A=25^{\circ}C$		0.02	0.1	mA
t r	Response time		500		ns
t _{ra}	Reaction time at di/dt = 100 A/μs		200		ns
f _{BW}	Frequency bandwidth	DC200)		kHz

General data

		min.	typ.	max.	Unit
$artheta_{A}$	Ambient operating temperature	-40		+85	°C
∂s	Ambient storage temperature	-40		+90	°C
m	Mass		12		g
Vc	Supply voltage	±11.4	±12 or ±15	±15.75	V
Ic	Current consumption		18,5		mA
*Sclear	clearance (component without solder pad)	10.2			mm
*Screep	creepage (component without solder pad)	10.2			mm
*U _{sys}	System voltage			600	V_{RMS}
*Uac	Working voltage			1020	V _{RMS}
*U _{PD}	Rated discharge voltage			1400	V_S
	Max. potential difference acc. to UL 508			600	Vac

^{*}Constructed and manufactored and tested in accordance with EN 61800-5-1:2007 (Pin 1 - 6 to Pin 7 – 9) Reinforced insulation, Insulation material group 1, Pollution degree 2, overvoltage category 3

Date	Name	Isuue	Amendr	nent					
20.01.2022	NSch.	82	Apllicab	licable document on sheet 4 changed. "The color of the plastic material added. Minor change					
17.08.15	17.08.15 DJ 82 Marking of item-no, value of primary resistance in page 2 (possibilities of wiring).changed. CN-15-420								
Hrg KB-E			Bearb:	DJ		KB-PM: Sn.			freig.: SB released

Item no.:

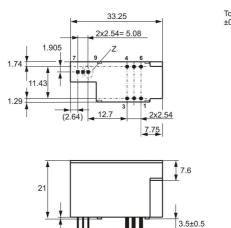
T60404-N4646-X400

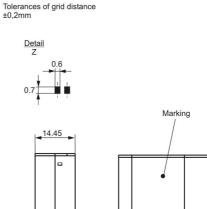
K-No.: 24578

25 A Current Sensor

For the electronic measurement of currents: DC, AC, pulsed, mixed ..., with a galvanic Isolation between the primary circuit (high power) and the secondary circuit (electronic circuit)

Date: 20.01.2022


Customer: Standard type


Customers Part no.:

Page 2 of 5

Mechanical outline (mm):

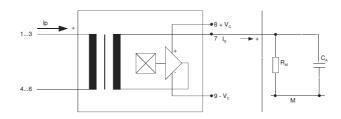
General tolerances DIN ISO 2768-c

Connections: 1...6: Ø 1.0 mm 7...9: 0.6x0.7 mm

Marking:

Explanation:

DC = Date Code F = Factory


6xØ1.0

0.65

3x0.7x0.6

Current direction: A positive output current appears at point I_S, by primary current in direction of the arrow.

Schematic diagram

Possibilities of wiring for $V_C = \pm 15V$ (@ $\theta_A = 85^{\circ}C$, $R_M = 22~\Omega$)

primary windings N _P	primary o RMS ma I _P [A] Î _{P,}		output current RMS I _S (I _P) [mA]	turns ratio K_{N}	primary resistance R_P [m Ω]	wiring
1	25	130	25	1:1000	0.3	1 3 6 4
2	10	65	20	2:1000	1.35	1 3 6 4
3	8	43	24	3:1000	2.4	> 1 6 4 >

Hrg KB-E	Bearb: DJ	KB-PM: Sn.		freig.: SB
editor	designer	check		released

Item no.:

T60404-N4646-X400

K-No.: 24578

25 A Current Sensor

For the electronic measurement of currents: DC, AC, pulsed, mixed ..., with a galvanic Isolation between the primary circuit (high power) and the secondary circuit (electronic circuit)

Date: 20.01.2022

Customer: Standard type Customers Part no.: Page 3 of 5

Electrical Data	(investigate by a type checking)

	min.	typ.	max.	Unit
V _{Ctot}	Maximum supply voltage (without function) ±15.75 ±18 V: for 1s per hour		±18	V
Rs	Secondary coil resistance @ θ_A =85°C		88	Ω
Rp	Primary coil resistance per turn @ T _A =25°C		1	mΩ
X_{Ti}	Temperature drift of X @ $\vartheta_A = -40 \dots +85 ^{\circ}$ C		0.1	%
l _{0ges}	Offset current (including Io, Iot, IoT)		0.15	mA
lot	Long term drift Offset current Io	0.05		mA
Іот	Offset current temperature drift $I_0 \otimes \vartheta_A = -40 \dots + 85^{\circ}C$	0.05		mA
Іон	Hyteresis current @ I _P =0 (caused by primary current 3 x I _{PN})	0.04	0.1	mA
$\Delta I_0/\Delta V_C$	Supply voltage rejection ratio		0.01	mA/V
ioss	Offset ripple (with1 MHz- filter first order)		0,15	mA
ioss	Offset ripple (with 100 kHz- filter first order)	0.03	0.05	mA
ioss	Offset ripple (with 20 kHz- filter first order)	0.007	0.015	mA
Ck	Maximum possible coupling capacity (primary – secondary)	4		pF
	Mechanical Stress according to M3209/3 Settings: 10 – 2000 Hz, 1 min/Oktave, 2 hours		10g	

l	
Inspection	(Measurement after temperature balance of the samples at room temperature)

$K_N(N_1/N_2)$	(V)	M3011/6	Transformation ratio (I _P =3*10A, 40-80 Hz)	13 : 100	0 ± 0.5 %
I_0	(V)	M3226	Offset current	< 0.1	mA
V _{P,eff}	(V)	M3014	Test voltage, rms, 1s Pin 1 - 6 to Pin 7 - 9	2.5	kV
V _e (AQL	_ 1/S4)		Partial discharge voltage acc. M3024 (RMS)	1300	V
•	,		with V _{vor} (RMS)	1625	V

Type Testing (Pin 1 - 6 to Pin 7 - 9)

Designed according standard EN 61800-5-1:2007 with insulation material group 1

Vw	HV transient test according (to M3064) (1.2 μs / 50 μs-wave form)		8	kV
V_d	Testing voltage acc. M3014 (RMS)	(5 s)	5	kV
Ve	Partial discharge voltage acc. M3024 (RMS)		1500	V
	with V_{vor} (RMS)		1875	V

Hrg KB-E	Bearb: DJ	KB-PM: Sn.		freig.: SB
editor	designer	check		released

Item no.:

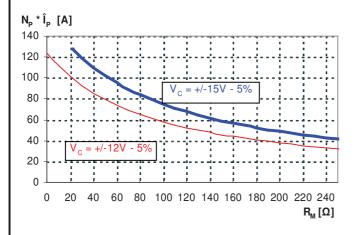
T60404-N4646-X400

K-No.: 24578

25 A Current Sensor

For the electronic measurement of currents: DC, AC, pulsed, mixed ..., with a galvanic Isolation between the primary circuit (high power) and the secondary circuit (electronic circuit)

Date: 20.01.2022


Customer: Standard type

Customers Part no.:

Page 4 of 5


Limit curve of measurable current ÎP(RM)

@ ambient temperature T_A ≤ 85 °C

Maximum measuring range (µs-range)

Output current behaviour of a 3kA current pulse @ $V_C = \pm 15V$ und $R_M = 25\Omega$

Fast increasing currents (higher than the specified $I_{p,max}$), e.g. in case of a short circuit, can be transmitted because the currents are transformed directly.

The offset ripple can be reduced by an external low pass. Simplest solution is a passive low pass filter of 1st order with

$$f_g = \frac{1}{2\pi \cdot R_M \cdot C_a}$$

In this case is the response time enlarged.

It is calculated from:

$$t_r' \leq t_r + 2.5 R_M \cdot C_a$$

Applicable documents

Constructed and manufactored and tested in accordance with EN 61800.

Temperature of the primary conductor should not exceed 100°C.

Further standards UL 508; file E317483, category NMTR2 / NMTR8

"The color of the plastic material is not specified and the current sensor can be supplied in different colors

(e.g. brown, black, white, natural). This has no effect on the specifications or UL approval."

Hrg KB-E	Bearb: DJ		KB-PM: Sn.		freig.: SB released
editor	designer	r	check		

Item no.:

T60404-N4646-X400

K-No.: 24578

25 A Current Sensor

For the electronic measurement of currents: DC, AC, pulsed, mixed ..., with a galvanic Isolation between the primary circuit (high power) and the secondary circuit (electronic circuit)

Date: 20.01.2022

Customer: Standard type

Customers Part no.:

Page 5 of 5

loh: Zero variation of lo after overloading with a DC of tenfold the rated value (R_M = R_{MN})

l_{0t}: Long term drift of l₀ after 100 temperature cycles in the range -40 bis 85 °C.

tr: Response time (describe the dynamic performance for the specified measurement range), measured as delay time at $I_P = 0.9 \cdot I_{Pmax}$ between a rectangular current and the output current.

 Δt (I_{Pmax}): Delay time (describe the dynamic performance for the rapid current pulse rate e.g short circuit current) measured between I_{Pmax} and the output current i_a with a primary current rise of di₁/dt = 100 A/ μ s.

X_{ges}(I_{PN}): The sum of all possible errors over the temperature range by measuring a current I_{PN}:

$$X_{ges} = 100 \cdot \left| \frac{I_{S}(I_{PN})}{K_{N} \cdot I_{SN}} - 1 \right| \%$$

X: Permissible measurement error in the final inspection at RT, defined by

$$X = 100 \cdot \left| \frac{I_{SB}}{I_{SN}} - 1 \right| \%$$

where IsB is the output DC value of an input DC current of the same magnitude as the (positive) rated current (Io = 0)

 X_{Ti} : Temperature drift of the rated value orientated output term. I_{SN} (cf. Notes on F_i) in a specified temperature range, obtained by:

$$X_{\text{Ti}} = 100 \cdot \left| \begin{array}{c} I_{\text{SB}}(\theta_{\text{A2}}) - I_{\text{SB}}(\theta_{\text{A1}}) \\ I_{\text{SN}} \end{array} \right| \%$$

(IsB: Secondary current θ_{A1} or θ_{A2})

 $\varepsilon_{\rm L}{:} \qquad \qquad \text{Linearity fault defined by} \qquad \varepsilon_{\rm L}{=}100 \cdot \left| \frac{I_{\rm P}}{I_{\rm PN}} - \frac{I_{\rm Sx}}{I_{\rm SN}} \right| \, \%$

Where IP is any input DC and ISx the corresponding output term.