
VACUUMSCHMELZE	SPECIFICATION Item no.:		no.:	T60404-N4646-X652		
K-no.: 24508	15 A Current Sensor Module for For electronic current measurement: DC, AC, pulsed, mixed, with a galvanic isolation between primary circuit (high power) and secondary circuit (electronic circuit)		ige	Date:	26.01.2022	
Customer: Stan	dard type Cust	omers Part no.:		Page	1 of 4	
Description Closed loop (comp Current Sensor with field probe Printed circuit board Casing and materia	 characteristics ensation) magnetic Very low offset current Very low temperature dep current drift 	pendency and offset set current	 drives Static conv. Battery sup Switched M Power Supp 	1	nd servo motor otor drives ns oplies (SMPS) g applications	
Electrical data – R	atings					
IPN	Primary nominal r.m.s. current		15		А	
Vout	Output voltage @ IP			± (0.625*1p/1pN		
Vout	Output voltage @ I_P Output voltage @ I_P Output voltage @ I_P =0, T_A =25°C			± 0.0071	V	
V _{Ref}	Reference voltage			± 0.0071	V	
KN	Turns ratio			3 : 2000	v	
				5.2000		
Accuracy – Dynan	nic performance data	min.	typ.	max.	Unit	
I _{P,max}	Max. measuring range	±51				
Х	Accuracy @ I _{PN} , T _A = 25°C			0.7	%	
εL	Linearity			0.1	%	
Vout -2,5V	Offset voltage @ IP=0, TA= 25°C			±7.1	mV	
$\Delta V_{out}/2,5V/\Delta T$	Temperatur drift of Vout @ IP=0, TA= -40	085°C	16	32	ppm/K	
tr	Response time @ 90% von IPN		300		ns	
∆t (I _{P,max})	Delay time at di/dt = 100 A/µs		200		ns	
f	Frequency bandwidth	DC2	00		kHz	
General data		min.	typ.	max.	Unit	
			typ.	+85	°C	
Т	Ambient operating temperature	-/1()			-	
T _A	Ambient operating temperature	-40		185	°C	
Ts	Ambient storage temperature	-40 -40	12	+85	°C	
Ts m	Ambient storage temperature Mass	-40	12 5		g	
Ts m Vc	Ambient storage temperature Mass Supply voltage		5	+85	g V	
Ts m	Ambient storage temperature Mass Supply voltage Current consumption Constructed and manufactored and test	-40 4.75 sted in accordance v	5 15 vith EN 61800-3	5.25	g V mA	
Ts m Vc	Ambient storage temperature Mass Supply voltage Current consumption	-40 4.75 sted in accordance v rial group 1, Pollutior	5 15 vith EN 61800-3	5.25	g V mA	
Ts m Vc Ic	Ambient storage temperature Mass Supply voltage Current consumption Constructed and manufactored and tem Reinforced insulation, Insulation mater	-40 4.75 sted in accordance v rial group 1, Pollution d) 7.5	5 15 vith EN 61800-3	5.25	g V mA	
Ts m Vc Ic Sclear Screep Vsys	Ambient storage temperature Mass Supply voltage Current consumption Constructed and manufactored and test Reinforced insulation, Insulation mater Clearance (component without solder pad) Creepage (component without solder pad) System voltage overvoltage category	-40 4.75 sted in accordance v rial group 1, Pollution d) 7.5 1) 8.0 7 3 RMS	5 15 vith EN 61800-3	5.25	g V mA 9 Pin 7 – 9) mm	
Ts m Vc Ic S _{clear} S _{creep}	Ambient storage temperature Mass Supply voltage Current consumption Constructed and manufactored and temperature Reinforced insulation, Insulation mater Clearance (component without solder pad) Creepage (component without solder pad) System voltage overvoltage category Working voltage (tabel 7 acc. to EN)	-40 4.75 sted in accordance v rial group 1, Pollution d) 7.5 i) 8.0 / 3 RMS l61800-5-1)	5 15 vith EN 61800-3	5.25 5-1 (Pin 1 - 6 to 300	g V mA 9 Pin 7 – 9) mm mm V	
Ts m Vc Ic Sclear Screep Vsys Vwork	Ambient storage temperature Mass Supply voltage Current consumption Constructed and manufactored and test Reinforced insulation, Insulation mater Clearance (component without solder pad) Creepage (component without solder pad) System voltage overvoltage category Working voltage (tabel 7 acc. to EN overvoltage category	-40 4.75 sted in accordance v rial group 1, Pollution d) 7.5 0) 8.0 7 3 RMS 161800-5-1) 7 2 RMS	5 15 vith EN 61800-4 n degree 2	5.25 5-1 (Pin 1 - 6 to 300 650	g V mA Pin 7 – 9) mm mm V V	
Ts m Vc Ic S _{clear} S _{creep} Vsys	Ambient storage temperature Mass Supply voltage Current consumption Constructed and manufactored and temperature Reinforced insulation, Insulation mater Clearance (component without solder pad) Creepage (component without solder pad) System voltage overvoltage category Working voltage (tabel 7 acc. to EN)	-40 4.75 sted in accordance v rial group 1, Pollution d) 7.5 i) 8.0 / 3 RMS l61800-5-1)	5 15 vith EN 61800-4 n degree 2	5.25 5-1 (Pin 1 - 6 to 300	g V mA Pin 7 – 9) mm mm V	
Ts m Vc Ic Sclear Screep Vsys Vwork	Ambient storage temperature Mass Supply voltage Current consumption Constructed and manufactored and test Reinforced insulation, Insulation mater Clearance (component without solder pad) Creepage (component without solder pad) System voltage overvoltage category Working voltage (tabel 7 acc. to EN overvoltage category	-40 4.75 sted in accordance v rial group 1, Pollution d) 7.5 0) 8.0 7 3 RMS 161800-5-1) 7 2 RMS	5 15 vith EN 61800-4 n degree 2	5.25 5-1 (Pin 1 - 6 to 300 650	g V mA Pin 7 – 9) mm mm V V	
Ts m Vc Ic Sclear Screep Vsys Vwork UPD Max. potential d	Ambient storage temperature Mass Supply voltage Current consumption Constructed and manufactored and tem Reinforced insulation, Insulation mater Clearance (component without solder pad Creepage (component without solder pad System voltage overvoltage category Working voltage (tabel 7 acc. to EN overvoltage category Rated discharge voltage ifference acc. to UL 508	-40 4.75 ested in accordance v rial group 1, Pollution d) 7.5 b) 8.0 / 3 RMS l61800-5-1) / 2 RMS peak v RMS	5 15 vith EN 61800-3 n degree 2 alue	5.25 5-1 (Pin 1 - 6 to 300 650 1320 600	g V mA P Pin 7 – 9) mm mm V V V V V V AC	
Ts m Vc Ic Sclear Screep Vsys Vwork UPD Max. potential d	Ambient storage temperature Mass Supply voltage Current consumption Constructed and manufactored and ter Reinforced insulation, Insulation mater Clearance (component without solder pad Creepage (component without solder pad System voltage overvoltage category Working voltage (tabel 7 acc. to EN overvoltage category Rated discharge voltage ifference acc. to UL 508	-40 4.75 ested in accordance v rial group 1, Pollution d) 7.5 b) 8.0 / 3 RMS l61800-5-1) / 2 RMS peak v RMS	5 15 vith EN 61800-3 n degree 2 alue	5.25 5-1 (Pin 1 - 6 to 300 650 1320 600	g V mA P Pin 7 – 9) mm mm V V V V V V AC	
Ts m Vc Ic Sclear Screep Vsys Vwork UPD Max. potential d	Ambient storage temperature Mass Supply voltage Current consumption Constructed and manufactored and temperature Reinforced insulation, Insulation mater Clearance (component without solder pad) System voltage overvoltage category Working voltage (tabel 7 acc. to EN overvoltage category Rated discharge voltage ifference acc. to UL 508 ssue Amendment 83 Applicable documents changed on sheet	-40 4.75 ested in accordance v rial group 1, Pollution d) 7.5 b) 8.0 / 3 RMS l61800-5-1) / 2 RMS peak v RMS	5 15 vith EN 61800-3 n degree 2 alue	5.25 5-1 (Pin 1 - 6 to 300 650 1320 600	g V mA P Pin 7 – 9) mm mm V V V V V V AC	

Copying of this document, disclosing it to third parties or using the contents there for any purposes without express written authorization by use illegally forbidden Any offenders are liable to pay all relevant damages.

VACUUMSCHMELZE	SPECIFICATION			Item no.:		T60404-N4646-X652	
-no.: 24508	For electron DC, AC, pul isolation bet (high power	15 A Current Sensor Module for 5V- Supply V For electronic current measurement: DC, AC, pulsed, mixed, with a galvanic isolation between primary circuit (high power) and secondary circuit (electronic circuit)		Voltage		Date: 26.01.2022	
ustomer: Stan	dard type		Customers Part	no.:		Page 3	3 of 4
lectrical Data					A		
Ma	Movimum		(frug et i e re)	min.	typ.	max.	Unit
V _{Ctot}		upply voltage (without		1 E A		7	V
		rent with primary curr		+ Amei	Ip*KN+Vout/F	ι <u></u>	mA
l _{out,SC}		t output current	T 05°0		±20		mA
RP		/ primary winding @			1	07	mΩ
Rs		coil resistance @ TA=	=85°C			67	Ω
Ri,(Vout)	•	stance of Vout				1	Ω
RL		commended resistan		1			kΩ
CL		commended capacita				500	pF
$\Delta X_{Ti}/\Delta T$		re drift of X @ T _A = -4				40	ppm/K
$\Delta V_0 = \Delta (V_{out} - 2.5)$	•	offset drift including:			6	12	mV
Vot	Long term of				2		mV
Vot	•	re drift von $V_0 @ T_A =$			5		mV
Vон		of V _{out} @ I _P =0 (after a	n overload of 10 x I _{PN})	3	mV	
$\Delta V_0 / \Delta V_C$		age rejection ratio				1	mV/V
Voss		e (with 1 MHz- filter fir	,			70	mV
Voss		e (with 100 kHz- filter	,		5.5	11	mV
V _{oss}		e (with 20 kHz- filter fi			1.5	3	mV
Cĸ	Mechanical	ossible coupling cap stress according to l) – 2000 Hz, 1 min/O	//3209/3	condary)	5	10 30g	pF
```	irement after tem	perature balance of the	•	. ,			
Vout (IP=IPN) (	V) M3011/6:	Output voltage vs. in	nternal reference (I	_P =15A, 40-80H	Hz)	625±0.7%	mV
Vout-2.5V (IP=0) (	V) M3226:	Offset voltage				± 7.1	mV
	V) M3014:	Test voltage, rms, 1	S			1.5	kV
	•	pin 1 – 6 vs. pin 7 –					
	QL 1/S4)	pin 1 – 6 vs. pin 7 – Partial discharge vo with $V_{vor}$ (RMS)		RMS)		1400 1750	V V
V _e (AC	QL 1/S4) 1 1 - 6 to Pin 7 - 9)	Partial discharge vo with V _{vor} (RMS)	Itage acc.M3024 (	RMS)			
V _e (AC	QL 1/S4) 1 - 6 to Pin 7 - 9) ing standard EN	Partial discharge vo with V _{vor} (RMS)	Itage acc.M3024 (I n material group 1			1750	V
Ve (AC <u>Type Testing</u> (Pin Designed accordi Vw	QL 1/S4) n 1 - 6 to Pin 7 - 9) ing standard EN HV transier	Partial discharge vo with V _{vor} (RMS) I 50178 with insulation	Itage acc.M3024 (I n material group 1		,	1750 8	V kV
V _e (AC <u>Type Testing</u> (Pin Designed accordi Vw Vd	QL 1/S4) n 1 - 6 to Pin 7 - 9) ing standard EN HV transier Testing volt	Partial discharge vo with V _{vor} (RMS) I 50178 with insulation at test according (to Mage to M3014	ltage acc.M3024 ( n material group 1 13064) (1,2 μs / 50		m) (5 s)	1750 8 3	V kV kV
Ve (AC <u>Type Testing</u> (Pin Designed accordi Vw	QL 1/S4) n 1 - 6 to Pin 7 - 9) ing standard EN HV transier Testing volt	Partial discharge vo with V _{vor} (RMS) I 50178 with insulation at test according (to M tage to M3014 harge voltage acc.M3	ltage acc.M3024 ( n material group 1 13064) (1,2 μs / 50		,	1750 8	V kV
V _e (AC <u>Fype Testing</u> (Pin Designed accordi Vw Vd Ve	QL 1/S4) n 1 - 6 to Pin 7 - 9) ing standard EN HV transier Testing volt Partial disc with V _{vor} (F	Partial discharge vo with V _{vor} (RMS) I 50178 with insulation at test according (to M tage to M3014 harge voltage acc.M3	ltage acc.M3024 ( n material group 1 13064) (1,2 μs / 50		,	1750 8 3 1400	V kV kV V
Ve (AC	QL 1/S4) 1 - 6 to Pin 7 - 9) ing standard EN HV transier Testing volt Partial disc with V _{vor} (F <b>Dents</b> to IEC529: IP50. 508 ; file E31744 rimary conductor ic material is not s	Partial discharge vo with V _{vor} (RMS) I 50178 with insulation at test according (to M tage to M3014 harge voltage acc.M3 MS)	Itage acc.M3024 ( n material group 1 13064) (1,2 μs / 50 8024 (RMS) by primary current in IMTR8 C. t sensor can be supp	μs-wave for direction of th	(5 s)	1750 8 3 1400	V kV kV V
Ve (AC	QL 1/S4) 1 - 6 to Pin 7 - 9) ing standard EN HV transier Testing volt Partial disc with V _{vor} (F <b>Dents</b> to IEC529: IP50. 508 ; file E31744 rimary conductor ic material is not s	Partial discharge vo with V _{vor} (RMS) I 50178 with insulation at test according (to N tage to M3014 harge voltage acc.M3 MS) rent appears at point I _s , 33, category NMTR2 / N should not exceed 110° specified and the curren	Itage acc.M3024 ( n material group 1 13064) (1,2 μs / 50 8024 (RMS) by primary current in IMTR8 C. t sensor can be supp	μs-wave for direction of th	(5 s)	1750 8 3 1400	V kV kV V

eutor
 designer
 check
 check

 Copying of this document, disclosing it to third parties or using the contents there for any purposes without express written authorization by use illegally forbidden Any offenders are liable to pay all relevant damages.

K-no.:       24508       15 A Current Sensor Module for 5V- Supply Voltage For electronic current measurement: DC, AC, Diede, Missel, with a gavanic light current measurement: DC, AC, Diede, Missel, with a gavanic light current measurement: DC, AC, Diede, Missel, with a gavanic light current or light and the provided measurement range). Page 4 of         Customer:       Standard type       Customers Part no.:       Page 4 of         Explanation of several of the terms used in the tablets (in alphabetical order)       It       Response time (describe the dynamic performance for the specified measurement range), measured as dela at $l = 0, 9$ . Imp between a rectangular ourrent and the output voltage Von(h)       Neasured between leves and the output voltage Von(h)       Measurement range), measured as dela distribution proved with a sinusoidal voltage Von(h)         Uno       Rated discharge voltage (recurring peak voltage separated by the insulation) proved with a sinusoidal voltage ' Uno       = $\sqrt{2} \cdot \sqrt{2} \cdot 1, 5$ Vev       Rated discharge voltage (recurring peak voltage separated by the insulation) proved with a sinusoidal voltage ' Uno         Uno       = $\sqrt{2} \cdot \sqrt{2} \cdot 1, 5$ Vev       = $1,875 \cdot Uno / \sqrt{2}$ Vev       = $1,875 \cdot Uno / \sqrt{2}$ Vev       = $1,875 \cdot Uno / \sqrt{2}$ Vev       System voltage         Vev       = $1,875 \cdot Uno / \sqrt{2}$ Vev       System voltage voltage according to IEC 61800-5-1         Vev	652
Explanation of several of the terms used in the tablets (in alphabetical order) t: Response time (describe the dynamic performance for the specified measurement range), measured as dela at $l_{r} = 0.9^{-1}$ is between a rectangular current and the output voltage $V_{OAL}(l_{B})$ t: Response time (describe the dynamic performance for the rapid current pulse rate e.g. short circuit current) measured between $l_{mex}$ and the output voltage $V_{OAL}(l_{max})$ with a primary current rise of div/dt $\ge 100 Al \mu s$ . Uro Rated discharge voltage (recurring peak voltage separated by the insulation) proved with a sinusoidal voltage ' $U_{TO} = \sqrt{2} \cdot V_{w} / 1.5$ Vvor Defined voltage is the RMS valve of a sinusoidal voltage with peak value of $1.875^{+1}$ Uro required for partial dis test in IEC 61800-5-1 $V_{vor} = 1.875^{-1}$ Uro / $\sqrt{2}$ Vvor $= 1.00^{-1}$ System voltage RMS value of rated voltage according to IEC 61800-5-1 Vvor $= 1.00^{-1}$ System voltage coording to IEC 61800-5-1 which occurs by design in a circuit or across insulation Vo: Offset voltage between Vvor and the rated reference voltage of Vvol $= 2.5V$ . $V_{v} = V_{out}(0)^{-2} - 2.5V$ Vor: Zero variation of V-after overloading with a DC of tentold the rated value Vo: Long term drift of V-after voltemperature cycles in the range -40 bis 85 °C. X: Permissible measurement error in the final inspection at RT, defined by $X_{2nn}(I_{2n}) - \frac{V_{vor}(I_{2n}) - V_{our}(0)}{0.625V} - 1 \Big _{\infty}^{+6}$ or $X_{2nn} = 100^{-1} \Big _{Voot}^{-1}(I_{2n}) - V_{voot}(0) \Big _{\infty}^{+6}$ a:: Linearity fault defined by $\varepsilon_{1} = 100^{-1} \Big _{T_{2n}}^{-1} - \frac{V_{voot}(I_{2n}) - V_{voot}(0)}{0.625V} - 1 \Big _{\infty}^{+6}$	22
t:       Response time (describe the dynamic performance for the specified measurement range), measured as dela at $ r = 0.9^{-1} _{e_1}$ between a rectangular current and the output voltage $V_{0.01}(h_1)$ At (lema):       Delay time (describe the dynamic performance for the rapid current pulse rate $e, g$ short circuit current) measured between lemax and the output voltage $V_{0.01}(h_{100})$ with a primary current rise of dir/dt 2 100 A/µs.         Uro       Rated discharge voltage (recurring peak voltage separated by the insulation) proved with a sinusoidal voltage $V_{0.01}(h_{100})$ Uro $= \sqrt{2} \cdot V_0 / 1.5$ Vor       Defined voltage is the RMS valve of a sinusoidal voltage with peak value of 1.875 * Uro required for partial disters in IEC 6 1800-5-1         Vor $= 1.875$ * Uro / $\sqrt{2}$ Vegs       System voltage         RMS value of rated voltage according to IEC 61800-5-1         Vegs       System voltage         Vor(0):       Offset voltage between $V_{out}$ and the rated reference voltage of $V_{ref} = 2.5V$ .         Vor       Vor(0): $2.5V$ Var:       Zero variation of $V_0$ after 100 temperature cycles in the rated value         Var:       Long term dirft of Va after 100 temperature cycles in the rated value         Var:       Long term dirft of Va after 100 temperature cycles in the rated value         Var:       Long term dirft of $V_{ast}(I_{PN}) - V_{ast}(0)$ $1$ Var:       Ver	4
at $l_{p}^{1} = 0.9 \cdot l_{PN}$ between a rectangular current and the output voltage V _{GM} (l _p ) 24 (l _{PPM} ): Delay time (describe the dynamic performance for the rapid current pulse rate e.g. short circuit current) measured between l _{PPMM} and the output voltage V _{GM} (l _{PPMM} ) with a primary current rise of dir/dt ≥ 100 A/µs. Uro Rated discharge voltage (recurring peak voltage separated by the insulation) proved with a sinusoidal voltage 'U _{PD} = v ² × V ₀ / 1.5 Uro Defined voltage is the RMS valve of a sinusoidal voltage with peak value of 1,875 * U _{PD} required for partial disters in IEC 61800-5-1 V _{eor} = 1,875 * U _{PD} / v ² V _{Py} System voltage RMS value of rated voltage according to IEC 61800-5-1 V _{eor} = 1,875 * U _{PD} / v ² V _{yp} System voltage voltage according to IEC 61800-5-1 which occurs by design in a circuit or across insulation V _C Offset voltage between V _{out} and the rated reference voltage of V _{eof} = 2,5V. V ₀ = V _{out} (0) - 2,5V Voi: Zoro variation of V _o after overloading with a DC of tenfold the rated value V ₀ : Long term drift of V ₀ after 100 temperature cycles in the range -40 bis 85 °C. X: Permissible measurement error in the final inspection at RT, defined by X = 100 · $\left  \frac{V_{out}(I_{PN}) - V_{out}(0)}{0,625V} - 1 \right  %$ or $X_{ov} = 100 · \left  \frac{V_{out}(I_{PN}) - V_{out}(0)}{0,625V} - 1 \right  %$ etc.: Linearity fault defined by $\varepsilon_{L} = 100 · \left  \frac{I_{PN}}{I_{PN}} - \frac{V_{out}(I_{PN}) - V_{out}(0)}{V_{out}(I_{PN}) - V_{out}(0)} \right $ %	
measured between lemax and the output voltage V _{out} (lemax) with a primary current rise of dir/dt ≥ 100 A/µs. Rated discharge voltage (recurring peak voltage separated by the insulation) proved with a sinusoidal voltage 1 U _{PD} = $\sqrt{2} \cdot V_0 / 1.5$ Vev Defined voltage is the RMS valve of a sinusoidal voltage with peak value of 1,875 * U _{PD} required for partial distinct in IEC 61800-5-1 Vev = 1,875 * U _{PD} / $\sqrt{2}$ Vev System voltage RMS value of rated voltage according to IEC 61800-5-1 Vev = 1,875 * U _{PD} / $\sqrt{2}$ Vev = Vev(0) = 2,5V Vev = Vout(0) = 2,5V Vev: Offset voltage between V _{out} and the rated reference voltage of V _{rot} = 2,5V. V ₀ = Vout(0) = 2,5V Vev: Zero variation of V ₀ after 100 temperature cycles in the range -40 bis 85 °C. X: Permissible measurement error in the final inspection at RT, defined by X = 100 $\cdot \left  \frac{V_{out}(I_{PX}) - V_{out}(0)}{0,625V} - 1 \right  \%$ or X _{gev} = 100 $\cdot \left  \frac{V_{out}(I_{PX}) - V_{out}(0)}{0,625V} - 1 \right  \%$ e.: Linearity fault defined by $\varepsilon_{L} = 100 \cdot \left  \frac{I_P}{I_{PX}} - \frac{V_{out}(I_{PX}) - V_{out}(0)}{V_{out}(I_{PX}) - V_{out}(0)} \right  \%$	ly time
$\begin{aligned} U_{PO} &= \sqrt{2} * V_0 / 1,5 \end{aligned}$ Ure $= \sqrt{2} * V_0 / 1,5$ Ure Defined voltage is the RMS value of a sinusoidal voltage with peak value of 1,875 * Ure required for partial distest in IEC 61800-5-1 Vor $= 1,875 * Ure / \sqrt{2}$ Vsys System voltage RMS value of rated voltage according to IEC 61800-5-1 Vor $= 1,875 * Ure / \sqrt{2}$ Vsys Contract of the voltage voltage according to IEC 61800-5-1 Vor $= 1,875 * Ure / \sqrt{2}$ Vsys Contract of Vor a solution of IEC 61800-5-1 which occurs by design in a circuit or across insulation Vo: Offset voltage between Vour and the rated reference voltage of Vref = 2,5V. V_0 = V_{out}(0) - 2,5V Ver: Zero variation of Vo after overloading with a DC of tenfold the rated value Vo: Long term drift of Vo after 100 temperature cycles in the range -40 bis 85 °C. X: Permissible measurement error in the final inspection at RT, defined by X = 100 $\cdot \left  \frac{V_{out}(I_{PN}) - V_{out}(0)}{0,625V} - 1 \right  \%$ ex.: Linearity fault defined by $\mathcal{E}_{L} = 100 \cdot \left  \frac{V_{out}(I_{PN}) - 2,5V}{0,625V} - 1 \right  \%$ ex.: Linearity fault defined by $\mathcal{E}_{L} = 100 \cdot \left  \frac{I_{P}}{I_{PN}} - \frac{V_{out}(I_{P}) - V_{out}(0)}{V_{out}(I_{PN}) - V_{out}(0)} \right  \%$	
test in IEC 61800-5-1 $V_{vor} = 1,875$ "Ueo / $\sqrt{2}$ $V_{sys}$ System voltage RMS value of rated voltage according to IEC 61800-5-1 $V_{vork}$ Working voltage voltage according to IEC 61800-5-1 which occurs by design in a circuit or across insulation $V_0$ : Offset voltage between $V_{out}$ and the rated reference voltage of $V_{ref} = 2,5V$ . $V_o = V_{out}(0) - 2,5V$ $V_{0H}$ : Zero variation of $V_o$ after overloading with a DC of tenfold the rated value $V_{01}$ : Long term drift of $V_o$ after 100 temperature cycles in the range -40 bis 85 °C. X: Permissible measurement error in the final inspection at RT, defined by $X = 100 \cdot \left  \frac{V_{out}(I_{PN}) - V_{out}(0)}{0,625V} - 1 \right  \%$ or $X_{ges} = 100 \cdot \left  \frac{V_{out}(I_{PN}) - V_{out}}{0,625V} - 1 \right  \%$ $\epsilon_1$ : Linearity fault defined by $\varepsilon_{L} = 100 \cdot \left  \frac{I_p}{I_{PN}} - \frac{V_{out}(I_p) - V_{out}(0)}{V_{out}(I_{PN}) - V_{out}(0)} \right  \%$	Ve
Vaya       System voltage       RMS value of rated voltage according to IEC 61800-5-1         Veconk       Working voltage       voltage according to IEC 61800-5-1 which occurs by design in a circuit or across insulation         Vec       Offset voltage between Vout and the rated reference voltage of Vret = 2,5V. Vo = Vout(0) - 2,5V         Vert:       Zero variation of Vo after overloading with a DC of tenfold the rated value         Vect       Long term drift of Vo after 100 temperature cycles in the range -40 bis 85 °C.         X:       Permissible measurement error in the final inspection at RT, defined by X = 100 · $\left  \frac{V_{out}(I_{PN}) - V_{out}(0)}{0,625V} - 1 \right  %$ X:       Permissible measurement error including any drifts over the temperature range by the current measurement X set = 100 · $\left  \frac{V_{out}(I_{PN}) - 2,5V}{0,625V} - 1 \right  %$ or $X_{pes} = 100 · \left  \frac{V_{out}(I_{PN}) - V_{rot}}{0,625V} - 1 \right  %$ et:       Linearity fault defined by $\varepsilon_{L} = 100 · \left  \frac{I_{P}}{I_{PN}} - \frac{V_{out}(I_{P}) - V_{out}(0)}{0,625V} - 1 \right  %$	charge
Vwork:       Working voltage       voltage according to IEC 61800-5-1 which occurs by design in a circuit or across insulation         Vo:       Offset voltage between Vout and the rated reference voltage of Vret = 2,5V.         V0 = Vout(0) - 2,5V         Vort:       Zero variation of Vo after overloading with a DC of tenfold the rated value         V0:       Long term drift of Vo after 100 temperature cycles in the range -40 bis 85 °C.         X:       Permissible measurement error in the final inspection at RT, defined by         X       = 100 · $\left  \frac{V_{out}(I_{PN}) - V_{out}(0)}{0,625V} - 1 \right  \%$ Yges(Iew):       Permissible measurement error including any drifts over the temperature range by the current measurement $X_{ges} = 100 \cdot \left  \frac{V_{out}(I_{PN}) - 2,5V}{0,625V} - 1 \right  \%$ or $X_{ges} = 100 \cdot \left  \frac{V_{out}(I_{PN}) - V_{out}(0)}{0,625V} - 1 \right  \%$ et:       Linearity fault defined by $\varepsilon_{L} = 100 \cdot \left  \frac{I_{P}}{I_{PN}} - \frac{V_{out}(I_{P}) - V_{out}(0)}{V_{out}(I_{PN}) - V_{out}(0)} \right  \%$	
Vo: Offset voltage between V _{out} and the rated reference voltage of V _{ref} = 2,5V. V _o = V _{out} (0) - 2,5V VoH: Zero variation of V _o after overloading with a DC of tenfold the rated value Va: Long term drift of V _o after 100 temperature cycles in the range -40 bis 85 °C. X: Permissible measurement error in the final inspection at RT, defined by $X = 100 \cdot \left  \frac{V_{out}(I_{PN}) - V_{out}(0)}{0,625V} - 1 \right  \%$ X _{ges} (IPN): Permissible measurement error including any drifts over the temperature range by the current measurement $X_{ges} = 100 \cdot \left  \frac{V_{out}(I_{PN}) - 2,5V}{0,625V} - 1 \right  \%$ or $X_{ges} = 100 \cdot \left  \frac{V_{out}(I_{PN}) - V_{ref}}{0,625V} - 1 \right  \%$ EL: Linearity fault defined by $\varepsilon_{L} = 100 \cdot \left  \frac{I_{P}}{I_{PN}} - \frac{V_{out}(I_{P}) - V_{out}(0)}{V_{out}(I_{PN}) - V_{out}(0)} \right  \%$	
$V_{0} = V_{out}(0)^{-} 2.5V$ Voh: Zero variation of V ₀ after overloading with a DC of tenfold the rated value Vo: Long term drift of V ₀ after 100 temperature cycles in the range -40 bis 85 °C. X: Permissible measurement error in the final inspection at RT, defined by $X = 100 \cdot \left  \frac{V_{out}(I_{PN}) - V_{out}(0)}{0,625V} - 1 \right  \%$ Xges(IPN): Permissible measurement error including any drifts over the temperature range by the current measurement $X_{ges}(I_{PN})$ : Permissible measurement error including any drifts over the temperature range by the current measurement $X_{ges}(I_{PN})$ : Permissible measurement error including any drifts over the temperature range by the current measurement $X_{ges} = 100 \cdot \left  \frac{V_{out}(I_{PN}) - 2.5V}{0,625V} - 1 \right  \%$ or $X_{ges} = 100 \cdot \left  \frac{V_{out}(I_{PN}) - V_{ref}}{0,625V} - 1 \right  \%$ etc. Linearity fault defined by $\varepsilon_{L} = 100 \cdot \left  \frac{I_{P}}{I_{PN}} - \frac{V_{out}(I_{P}) - V_{out}(0)}{V_{out}(I_{PN}) - V_{out}(0)} \right  \%$	
Vot: Long term drift of V _o after 100 temperature cycles in the range -40 bis 85 °C. X: Permissible measurement error in the final inspection at RT, defined by $X = 100 \cdot \left  \frac{V_{out}(I_{PN}) - V_{out}(0)}{0,625V} - 1 \right  \%$ Xges(IPN): Permissible measurement error including any drifts over the temperature range by the current measurement $X_{ges} = 100 \cdot \left  \frac{V_{out}(I_{PN}) - 2.5V}{0,625V} - 1 \right  \%$ or $X_{ges} = 100 \cdot \left  \frac{V_{out}(I_{PN}) - V_{ref}}{0,625V} - 1 \right  \%$ etc: Linearity fault defined by $\varepsilon_{L} = 100 \cdot \left  \frac{I_{P}}{I_{PN}} - \frac{V_{out}(I_{P}) - V_{out}(0)}{V_{out}(I_{PN}) - V_{out}(0)} \right  \%$	
X: Permissible measurement error in the final inspection at RT, defined by $X = 100 \cdot \left  \frac{V_{out}(I_{PN}) - V_{out}(0)}{0,625V} - 1 \right  \%$ X _{ges} (IPN): Permissible measurement error including any drifts over the temperature range by the current measurement $X_{ges} = 100 \cdot \left  \frac{V_{out}(I_{PN}) - 2,5V}{0,625V} - 1 \right  \% \text{ or } X_{ges} = 100 \cdot \left  \frac{V_{out}(I_{PN}) - V_{ref}}{0,625V} - 1 \right  \%$ EL: Linearity fault defined by $\varepsilon_{L} = 100 \cdot \left  \frac{I_{P}}{I_{PN}} - \frac{V_{out}(I_{P}) - V_{out}(0)}{V_{out}(I_{PN}) - V_{out}(0)} \right  \%$	
$X = 100 \cdot \left  \frac{V_{out}(I_{PN}) - V_{out}(0)}{0,625V} - 1 \right  \%$ $X_{ges}(I_{PN}): \text{ Permissible measurement error including any drifts over the temperature range by the current measurement X_{ges} = 100 \cdot \left  \frac{V_{out}(I_{PN}) - 2,5V}{0,625V} - 1 \right  \% \text{ or } X_{ges} = 100 \cdot \left  \frac{V_{out}(I_{PN}) - V_{ref}}{0,625V} - 1 \right  \% EL: Linearity fault defined by \varepsilon_{L} = 100 \cdot \left  \frac{I_{P}}{I_{PN}} - \frac{V_{out}(I_{P}) - V_{out}(0)}{V_{out}(I_{PN}) - V_{out}(0)} \right  \%$	
$X_{ges}(I_{PN}): \text{ Permissible measurement error including any drifts over the temperature range by the current measurement } X_{ges} = 100 \cdot \left  \frac{V_{out}(I_{PN}) - 2.5V}{0.625V} - 1 \right  \% \text{ or } X_{ges} = 100 \cdot \left  \frac{V_{out}(I_{PN}) - V_{ref}}{0.625V} - 1 \right  \%$	
$X_{ges} = 100 \cdot \left  \frac{V_{out}(I_{PN}) - 2,5V}{0,625V} - 1 \right  \% \text{ or } X_{ges} = 100 \cdot \left  \frac{V_{out}(I_{PN}) - V_{ref}}{0,625V} - 1 \right  \%$ EL: Linearity fault defined by $\varepsilon_{L} = 100 \cdot \left  \frac{I_{P}}{I_{PN}} - \frac{V_{out}(I_{P}) - V_{out}(0)}{V_{out}(I_{PN}) - V_{out}(0)} \right  \%$	
	Ipn
Hrsg.: KB-E Bearb: Le KB-PM: KRe freig.: SB	

Copying of this document, disclosing it to third parties or using the contents there for any purposes without express written authorization by use illegally forbidden Any offenders are liable to pay all relevant damages.